As the $\left[\mathrm{Ag}_{2} \mathrm{I}_{6}\right]^{4-}$ anion has no intermolecular distance shorter than $4.3 \AA$, it may be characterized as an isolated di- μ-iodo-bis[diiodoargentate(I)], which consists of two AgI_{4} tetrahedra sharing a common edge (Fig. 2). In all known structures of iodoargentates the Ag atom is tetrahedrally coordinated by four I atoms, but the tetrahedra are connected over common corners, edges or planes building polymeric chains, layers or three-dimensional networks (Gilmore, Tucker \& Woodward, 1971, and references therein; Coetzer, 1975; Coetzer \& Thackeray, 1975; Thackeray \& Coetzer, 1975a,b, 1978, and references therein; Geller, 1972; Geller \& Dudley, 1978; Geller, Skarstad \& Wilber, 1975). Structures with isolated iodoargentates have not yet been reported, though the existence of $\mathrm{Ag}_{2}{ }_{6}{ }_{6}^{4-}$ in melts has been postulated by Holmberg (1973). The connection of the two tetrahedra in $\left[\mathrm{Ag}_{2} \mathrm{I}_{6}{ }^{4-}\right.$ causes a distortion of the tetrahedral coordination around Ag with the angle $\mathrm{I}(2)-\mathrm{Ag}-\mathrm{I}(2)^{\prime}$ becoming much smaller than the others. The bridging $\mathrm{Ag}-\mathrm{I}$ distance is longer than the terminal ones. These features are found for other $M_{2} X_{6}$ metal halides. The $\mathrm{Ag}-\mathrm{I}$ distances lie in the range found for polymeric structures. The calculation of the bond-valence sum for Ag (Brown, Howard-Lock \& Natarajan, 1977) yielded a value somewhat too small (0.93 instead of 1.00), again comparable to polymeric iodoargentates with values in the range 0.9 to 1.0 .

Fig. 2. ORTEP plot of the $\left[\mathrm{Ag}_{2} \mathrm{I}_{6}\right]^{4-}$ anion.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG Ke 135/26 and Ke 135/29-2).

References

Brown, I. D., Howard-Lock, H. E. \& Natarajan, M. (1977). Can. J. Chem. 55, 1511-1514.

Coetzer, J. (1975). Acta Cryst. B31, 622-623.
Coetzer, J. \& Thackeray, M. M. (1975). Acta Cryst. B31, 2113-2114.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Endres, H., Keller, H. J., Martin, R. \& Traeger, U. (1979). Acta Cryst. B35, 2880-2882.

Freckmann, B. \& Tebbe, K. F. (1981). Acta Cryst. B37, 1520-1523.
Geller, S. (1972). Science, 176, 1016-1019.
Geller, S. \& Dudley, T. D. (1978). J. Solid State Chem. 26, 321-328.
Geller, S., Skarstad, P. M. \& Wilber, S. A. (1975). J. Electrochem. Soc. 122, 332-338.
Gilmore, C. J., Tucker, P. A. \& Woodward, P. (1971). J. Chem. Soc. A, pp. 1337-1341.
Holmberg, B. (1973). Acta Chem. Scand. 27, 3657-3667.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Keller, H. J., Martin, R. \& Traeger, U. (1978). Z. Naturforsch. Teil B, 33, 1263-1266.
Thackeray, M. M. \& Coetzer, J. (1975a). Acta Cryst. B31, 2339-2340.
Thackeray, M. M. \& Coetzer, J. (1975b). Acta Cryst. B31, 2341-2342.
Thackeray, M. M. \& Coetzer, J. (1978). Acta Cryst. B34, 71-75.
Willemse, J., Cras, J. A., Wijnhoven, J. G. \& Beurskens, P. T. (1973). Recl Trav. Chim. Pays-Bas, 92, 1199-1209.

Acta Cryst. (1982). B38, 1605-1607

$\operatorname{Bis}[\mu$-(2-methylaminopyridine 1-oxide)- μ-O]-bis[dichloro(2-methylaminopyridine 1-oxide)copper(II)]

By S. F. Pavkovic and S. L. Wille
Department of Chemistry, Loyola University of Chicago, Chicago, Illinois 60626, USA

(Received 7 August 1981; accepted 20 January 1982)

Abstract. $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{4}\right], \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{Cl}_{4} \mathrm{Cu}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$, $M_{r}=765 \cdot 4$, triclinic, $P \overline{1}, a=11.0483(11), b=$ 9.2975 (9), $c=9.4998$ (9) $\AA, \alpha=124.61$ (1), $\beta=$ $92.85(1), \gamma=99.26(1)^{\circ}$, at $298 \mathrm{~K}, Z=1, D_{m}=$

0567-7408/82/051605-03\$01.00
$1.63(2), D_{c}=1.628 \mathrm{Mg} \mathrm{m}^{-3}$. The structure was solved by a combination of direct methods and Fourier synthesis techniques which led to a conventional R of 0.041 for the 255 parameters varied and 2147
© 1982 International Union of Crystallography
observed reflections used in the refinement. The molecular structure consists of a centrosymmetric bridged dimer with each square-pyramidal Cu bonded to three terminal atoms (one O and two Cl) and two bridging O atoms with bonding distances of 1.928 (2), 2.231 (1), 2.515 (1), 1.988 (2) and 2.054 (2) \AA respectively. The internal bridge angles are $71.1(5)^{\circ}$ at Cu and $108.9(5)^{\circ}$ at O .

Introduction. The title compound is one in a series of copper complexes under investigation which contain ring-substituted pyridine 1 -oxide ligands. An ongoing correlative study is being made with respect to their chemical compositions, EPR spectra and molecular structures (Pavkovic \& Brown, 1982; West, Pavkovic \& Brown, 1980). The present structure determination was undertaken because the title compound differs markedly in its spectral and magnetic properties from previously available examples (West \& Wang, 1979).

Amber crystals were obtained by slow evaporation from a methanol/ethyl orthoformate solution of the powdered compound. A fragment (measuring $0.15 \times$ $0.24 \times 0.36 \mathrm{~mm}$) was mounted nearly parallel to the a^{*} axis, and all subsequent measurements were carried out with a Picker FACS-I automated diffractometer. The crystal belongs to the triclinic system and cell constants were determined by a least-squares refinement of 33 reflections ($60<|2 \theta|<78^{\circ}$) measured with $\mathrm{Cu} K \alpha$ radiation $\left[\lambda\left(\mathrm{Cu} K \alpha_{1}\right)=1.54050, \lambda\left(\mathrm{Cu} K \alpha_{2}\right)=\right.$ $1.54433 \AA$]. The structure was solved and is reported using the unit cell given in the $A b s t r a c t$. A reduced cell [$a=8.7381$ (9), $b=9.2975$ (9), $c=11.0483$ (11) \AA, α $\left.=80.74(1), \beta=76.98(1), \gamma=63.48(1)^{\circ}\right]$ is obtained by transforming with the matrix whose rows $1-3$ are: $011,010,-100$. The space group was assumed to be $P \overline{1}$, and this choice was verified by a subsequent successful structure solution.

Intensities were measured with Ni -filtered Cu radiation ($40 \mathrm{kV}, 12 \mathrm{~mA}$, take-off angle $2 \cdot 5^{\circ}$). Data were collected using the coupled $\theta: 2 \theta$ technique from 3 to 120°, with a scan rate of $2^{\circ} \mathrm{min}^{-1}$ and range of 2.4 $\times(1+0.4 \tan \theta)^{\circ}$, with 10 s background measurements at both extremities of the scan. 2328 reflections were measured of which 2147 reflections having $\left|F_{o}\right|>$ $3 \sigma\left(F_{o}\right)$ were used in the structure solution and refinement; $\sigma^{2}\left(F_{o}\right)=1 / w=\left(F_{o} / 2 I_{n}\right)^{2}\left[I_{s}+\left(t_{s} / t_{b}\right)^{2} I_{b}+\right.$ $\left.\left(0.02 I_{n}\right)^{2}\right]$, where I, t, s, n and b refer to intensity (counts), time (s), scan, net and background, respectively. Three standard reflections measured after every 50 data reflections showed an average intensity decrease of less than 1%. Intensities, which were corrected for absorption as a function of φ [linear $\mu=$ $4.98 \mathrm{~mm}^{-1}$: maximum/minimum transmission (calculated) $=1.5$, (observed) $=1.4]$ and Lorentzpolarization effects in the usual manner, were converted to structure factor amplitudes.

The structure was refined by a full-matrix leastsquares program which minimized the function $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, utilized anisotropic temperature factors and included a correction for secondary extinction. Atomic scattering factors for nonhydrogen atoms were taken from tabulations of Cromer \& Waber (1965) and for H atoms the values of Stewart, Davidson \& Simpson (1965) were used; corrections for real and imaginary anomalous-dispersion effects were applied to scattering factors of copper and chlorine atoms (Cromer \& Liberman, 1970).

A difference Fourier electron density map contained peaks near all 16 expected H atom positions. H atoms were included in the model structure and refined isotropically. Refinement converged to $R=\left[\sum\left(\left|F_{o}\right|-\right.\right.$ $\left.\left.\left|F_{c}\right|\right) / \sum\left(F_{o}\right)\right]=0.041$ and $\boldsymbol{R}_{\boldsymbol{w}}=\left[\sum w\left(\left|F_{o}\right|-\right.\right.$ $\left.\left.\left|F_{c}\right|\right)^{2} / \sum w\left(F_{o}\right)^{2}\right]^{1 / 2}=0.047$. There were no significant

Fig. 1. A perspective view of the $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{CuN}_{4} \mathrm{O}_{2}\right]_{2}$ molecule (Johnson, 1965). The hydrogen atoms are omitted from the diagram and all other atoms are shown as ellipsoids of 50% probability.

Table 1. Final positional parameters and equivalent isotropic thermal parameters

Fig. 2. A diagrammatic representation of the $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{CuN}_{4} \mathrm{O}_{2}\right]_{2}$ molecule showing bond distances (\AA) and angles (${ }^{\circ}$). Atoms on the right (unprimed symbols) are related to those on the left (primed symbols) by an inversion center. Bond distances and angles involving Cu have e.s.d.'s less than $0.003 \AA$ and 0.10°; other distances and angles have e.s.d.'s of $0.004-0.007 \AA$ and $0.25-0.50^{\circ}$.
shifts observed for nonhydrogen atom parameters in the final cycle of refinement. For H atom parameters the observed shifts were less than $0 \cdot 3 \sigma$. Major peaks in the final difference Fourier electron density map have a maximum height of $0.5 \mathrm{e}^{-3} \AA^{-3}$, and are located within $1.2 \AA$ of the copper atom. Atomic coordinates are listed in Table 1, Fig. 1 is a perspective view of the complex, and Fig. 2 shows the atom numbering scheme and bonding distances and angles. E.s.d.'s (from the least-squares matrix) are less than $0.007 \AA$ and 0.6° for all bond distances and angles. E.s.d.'s involving bonds to copper are less than $0.003 \AA$ and 0.1°. Throughout the text primed atom symbols refer to inverted positions ($\bar{x}, \bar{y}, \bar{z}$) relative to their coordinates listed in Table 1.*

[^0]Discussion. The coordination geometry about Cu can be described as a distorted square pyramid. The square is composed of $\mathrm{Cl}(2)$ and three O atoms with $\mathrm{Cl}(2)$ and $O\left(1^{\prime}\right)$ below and $O(1)$ and $O(2)$ above the idealized base plane by as much as 0.31 (1) \AA. The Cu and $\mathrm{Cl}(1)$ are 0.41 (1) and 2.86 (1) \AA above the idealized plane and the $\mathrm{Cu}-\mathrm{Cl}(1)$ bond makes an angle of $77(1)^{\circ}$ to the plane. The two square pyramids in the dimer are related by an inversion center. They share $O(1)$ and $\mathrm{O}\left(1^{\prime}\right)$ along a common base edge. The amine N atoms are not coordinated to Cu .

At the center of the molecule the separation between opposed atoms within the $\mathrm{Cu}-\mathrm{O}(1)-\mathrm{Cu}^{\prime}-\mathrm{O}\left(1^{\prime}\right)$ central ring is 2.351 (5) for $\mathrm{O}(1)$ and 3.289 (1) \AA for Cu . The angle between the $\mathrm{O}\left(1^{\prime}\right)-\mathrm{Cu}-\mathrm{O}(2)$ and $\mathrm{Cu}-\mathrm{O}(2)-\mathrm{N}(3)$ planes is $34 \cdot 2(4)^{\circ}$. The dihedral angle between planes of the central ring and bridging pyridine ring (A) is $90(1)^{\circ}$ whereas for the terminal pyridine ring (B) the corresponding angle is $70(1)^{\circ}$; between the planes of ring A and ring B the angle is $86(1)^{\circ}$.

Amine H atoms from both rings are H bonded to $\mathrm{Cl}(1)$ and the parameters are $\mathrm{H}-\mathrm{Cl}(1)=2.58$ (4), 2.41 (4); $\mathrm{N}-\mathrm{Cl}(1)=3.278$ (4), 3.327 (4) \AA; and $\mathrm{N}-\mathrm{H}-\mathrm{Cl}(1)=147(3), 166(3)^{\circ}$, where the first value listed refers to ring A atoms and the second to ring B atoms. There are no H bonds to $\mathrm{Cl}(2)$. The tilt of ring B relative to the central ring serves to enhance H bonding to $\mathrm{Cl}(1)$ and reduce steric interactions between pyridine ring atoms and $\mathrm{Cl}(2)$.

References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee.
Pavkovic, S. F. \& Brown, J. N. (1982). Acta Cryst. B38, 274-276.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

West, D. X., Pavkovic, S. F. \& Brown, J. N. (1980). Acta Cryst. B36, 143-145.
West, D. X. \& Wang, W.-H. (1979). J. Inorg. Nucl. Chem. 41, 1719-1723.

[^0]: * Lists of structure factors, anisotropic thermal parameters and hydrogen atom parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36645 (15 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

